
Improving SSD Read Latency via Coding
Hyegyeong Park ,Member, IEEE and Jaekyun Moon , Fellow, IEEE

Abstract—Westudy the potential enhancement of the read access speed in high-performance solid-state drives (SSDs) by coding, given

speed variations across themultiple flash interfaces and assuming occasional local memory failures. Our analysis is based on a queuing

model that incorporates both read request failures and NAND element failures. TheNAND element failure in the present context reflects

various limitations on thememory element level such as bad blocks, dies or chips that cannot be corrected by error control coding (ECC)

typically employed to protect pages read off the NAND cells. Our analysis provides a clear picture of the storage-overhead and read-

latency trade-offs given read failures and NAND element failures.We investigate two different ways tomitigate the effect of NAND

element failures using the notion of multi-class jobswith different priorities. A strongmotivation for this work is to understand the reliability

requirement of NAND chip components given an additional layer of failure protection, under the latency/storage-overhead constraints.

Index Terms—NAND flash memory, solid-state drives, NAND component failures, distributed storage, latency analysis, queuing theory, error-

control coding

Ç

1 INTRODUCTION

AS the demand continues for higher storage density in
solid-state drives (SSDs), the NAND process size inevi-

tably shrinks, resulting in considerable difficulties in main-
taining yield in the NAND manufacturing process. Strong
error control coding (ECC) [2], [3], [4], [5], [6] and well-
tailored signal processing [7], [8], [9] have been increasingly
used to help relieve this burden on NAND manufacturing.
For example, advanced low-density parity-check (LDPC)
coding [10] is now widely deployed to protect pages read
off the NAND cells, allowing raw bit error rates (RBERs) in
accessing the NAND cells to drop to extremely low levels
[2], [3], [4]. An unfortunate price paid is the considerable
increase in the read latency as generating soft read values of
the cells needed for the LDPC decoder requires multiple
sensing/read operations that are highly time-consuming.

In this work, we analyze the problem from a different
perspective. We investigate the power of ECC while bring-
ing the read access time into the picture. The read access time
is the read response time, which is defined as the time taken
since the read request until the controller receives the
data. Specifically, we explore trade-offs between coding-
overhead and read-access-time first time use of RBER and
memory element failure probability. To do this, we exploit
the idea and analytical tools from the studies on coding for
distributed storage. A distributed storage system consists of
multiple storage servers which contain information in a dis-
tributed manner. Simple replication or erasure coding is
often applied across the distributed servers to improve data
reliability throughout the system.

While prior work exists on the use of erasure coding to
improve download time of distributed storage [11], [12], [13],
[14], [15], [16], here we are concerned with SSD-specific read
access time and the failure event models that have not been
previously used in the SSD system performance analysis. In
particular, we introduce a newmodel for the read access time
distribution reflecting a step increase in read latency that
occurs every time read access fails. We also extend the (n, k)
fork-join model introduced in [14] to include the following
two types of failures: (a) the read failure in accessing individ-
ual NAND cells in spite of using ECCs, and (b) theNANDele-
ment failure event. The NAND element here can be the chip/
die/block/page, which is similar to the silicon element in the
redundant array of independent silicon elements (RAISE)
[17]. To handle such NAND element failure events, multiple
priority classes are included in our analysis. While the multi-
ple classes with different priorities are also considered in [15],
[16], there the priority is introduced to model the heterogene-
ity of the cloud storage data and there is no consideration of
the NAND-specific system modeling. Thus, the approaches
cannot be directly applied to the problem at hand.

In [2], progressive memory-sensing/LDPC-code-decod-
ing is utilized to reduce system latency in the face of read
failure events. In contrast to the work of [2], we also con-
sider the NAND element failures. We handle the NAND
element failures under the two different proposed policies,
which are called instantaneous repair (IR) and postponed repair
(PR) policies. The IR policy gives the NAND element failure
the higher priority for service (i.e., reconstruction) under
the preemptive-resume priority. On the contrary, the PR
policy assigns the lower priority to the NAND element fail-
ure under the non-preemptive priority.

The main contributions of this paper are as follows:

1) We demonstrate how coding improves the read
access time in SSDs.

2) We present upper bounds for the mean read access
time, while also considering the SSD-specific read

� The authors are with the School of Electrical Engineering, Korea Advanced
Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.
E-mail: parkh@kaist.ac.kr, jmoon@kaist.edu.

Manuscript received 9 Apr. 2019; revised 21 Nov. 2019; accepted 22 Feb. 2020.
Date of publication 6 Mar. 2020; date of current version 6 Nov. 2020.
(Corresponding author: Hyegyeong Park.)
Recommended for acceptance by H. Jiang.
Digital Object Identifier no. 10.1109/TC.2020.2978823

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 12, DECEMBER 2020 1809

0018-9340� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on November 22,2020 at 14:16:59 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3686-8891
https://orcid.org/0000-0003-3686-8891
https://orcid.org/0000-0003-3686-8891
https://orcid.org/0000-0003-3686-8891
https://orcid.org/0000-0003-3686-8891
https://orcid.org/0000-0003-0993-5788
https://orcid.org/0000-0003-0993-5788
https://orcid.org/0000-0003-0993-5788
https://orcid.org/0000-0003-0993-5788
https://orcid.org/0000-0003-0993-5788
mailto:parkh@kaist.ac.kr
mailto:jmoon@kaist.edu

access time distribution and failure events of the
read request and NAND element.

3) We propose two types of policies against NAND ele-
ment failures so that the reduction of read access
time due to the proposed coding is maintained even
in the presence of the NAND element failures.

4) Through the analysis and numerical simulation
result, we provide necessary insights into new trade-
offs related to the tolerable level of physical memory
failure rates.

Our contributions listed lay down a path towardmore effi-
cient utilization of storage overheads under the consideration
of the target yields in theNANDmanufacturing process.

Compared to the conference version [1] of this work, the
present paper adds significantly in the following ways:
first of all, this paper suggests an improved way of miti-
gating the effect of NAND element failure based on a new
PR policy. If the NAND element failure arises frequently
the IR policy introduced in [1] can be inefficient, since all
the read operations are suspended to repair the failed ele-
ment as soon as a failure event occurs. Adopting the PR
policy, the repair process can wait until all read requests
in the queues have been processed thanks to additional
coding. The present paper provides a new latency analysis
including the effect of the proposed PR policy against
NAND element failure. Through both analysis and numer-
ical simulations, it is shown that the PR policy can have a
significantly better latency performance for a certain range
of RBERs compared to the IR policy. Also, NAND element
failure modeling and corresponding repair job modeling
are new in the present paper. The underlying assumptions
associated with modeling are clarified with more detailed
descriptions and clearly justified based on the results of
previous literature.

The rest of this paper is organized as follows. Section 2 con-
tains a review of the relevant literature. Section 3 presents the
description of the target problem and system model. In
Section 4, we discuss a layered coding structure for SSDs
based on the internal parallelism. In Section 5, analysis of read
access time without the consideration of NAND element fail-
ures is given. In Sections 6 and 7, we provide the analysis of
read access time in the existence of NAND element failures.
Two different types of approaches to protect the system
against NANDelement failures are introduced aswell. In Sec-
tion 8, numerical simulation results show that the proposed
layered coding gives a reduction in latency relative to the sys-
tem without layered coding. A comparison between the
latency performance under the two proposed policies against
NAND element failures is also provided. Finally, the paper
draws conclusions in Section 9.

2 RELATED WORK

2.1 Distributed Storage Coding

Coding for distributed storage is an active area of research.
For providing fault tolerance to distributed storage, 3-repli-
cation has been widely used in the Google File System
(GFS) [18] and Hadoop Distributed File System (HDFS) [19].
This method simply stores three exact copies of the original
data across the distinct servers so that a failed copy of the
data can be recovered by accessing only one other intact

copy of the data. That is, replication is optimal in repair
bandwidth.1 However, replication has a high cost in terms of
storage overhead. Erasure codes such as the well-known
Reed-Solomon (RS) codes [20] have been deployed as well,
which have the minimum storage overhead while requiring
an expensive cost in repair bandwidth.

After the work of Dimakis et al. [21], which introduced
the regenerating codes that could achieve the optimal
trade-off between the repair bandwidth and storage, there
has been the following line of work on efficient codes in
terms of various resource parameters: access I/O [22],
[23], locality [24], [25], [26], download time [11], [12], [13],
[14], [15], [16] and energy consumption [15]. Moreover,
trade-offs among key resource parameters have been
explored: among repair bandwidth, storage and reliability
in [27] and among I/O, storage and network bandwidth
in [28].

2.2 High-Level Coding

The chip level memory failure is a growing concern
and a variety of techniques related to the redundant-array-
of-independent disks (RAID) already exist to address this
issue [29], [30]. For example, Chipkill from IBM [31],
Advanced ECC from HP [32] and redundant array of indepen-
dent NAND (RAIN) from Micron [33] all provide fault toler-
ance on the chip level. RAISE from SandForce [17] further
considers data protection on the die/block/page level.
The superblock/superpage from Micron [34] is another
approach to improving speed by grouping multiple blocks/
pages across chips and planes [29], [34], [35], [36]. This
improves the throughput since the multiple pages with a
large volume involved in the same superpage/superblock
can be read/written/erased simultaneously.

Unlike in the RAID-like systems or systems with the
superblock/superpage-level parity, we also aim at reduc-
ing the read access time using codes. In the conference
version [1] of this paper, we have introduced a layered cod-
ing structure boosted by outer MDS coding across NAND
elements,2 in addition to the inner soft-decision ECC such
as the LDPC code. Typical SSD architecture is based on an
array of NAND flash memory packages. Such packages
and the flash controller are interconnected with multiple
channels. Data accesses can be parallelized and conducted
independently over channels. The importance of exploit-
ing internal parallelism in high-performance SSDs is thor-
oughly investigated in [37], [38]. The highly parallelized
structure of SSDs opens up the possibility of introducing
queuing theoretic analysis. In the case under consider-
ation in this work, reducing read access time is possible
via the high-level erasure coding across parallel channels,
since during the read the original data can be recon-
structed by accessing any k fastest available channels out
of n parallel ones.

1. The repair bandwidth is defined as the amount of data to be
downloaded to repair one data unit failure.

2. We refer to a symbol in the erasure code as a node. Since we
deploy the outer MDS code across NAND elements, any NAND ele-
ments such as page/block/die/chip can be regarded as nodes. Note
also that in layered coding, the outer ECC and high-level (erasure) cod-
ing are terms that can be used interchangeably.

1810 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 12, DECEMBER 2020

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on November 22,2020 at 14:16:59 UTC from IEEE Xplore. Restrictions apply.

3 TARGET PROBLEM AND SYSTEM DESCRIPTION

3.1 Target Problem

A failure of NAND elements such as the pages, blocks, dies or
chips is catastrophic in that it cannot be recovered by the ECC
applied over a page. In this paper, we consider the problem of
mitigating failures and improving data access time by intro-
ducing high-level erasure coding. More specifically, we are
interested in doing a latency analysis of the SSD system
equipped with high-level erasure coding, and exploring the
trade-off relationships between the coding-overhead and
read access time. We further aim to investigate how the trade-
off changes in the presence of failure events. We thus define
the types of failures that we are interested in as follows.

Definition 1.

� Read request failures: LDPC code decoding failures
that invoke additional voltage sensing

� NAND element failures: occasional failures of NAND
elements that require data reconstruction

In the progressive memory sensing and decoding scheme,
once the LDPC code decoding run fails, the controller increases
memory sensing quantization level by one. The sensing level
increment continues until the decoding succeeds or the num-
ber of retries reaches the highest sensing precision. The decod-
ing failure events, which invoke re-sensing of the memory
cells, are considered as read failure events in the presentwork.

3.2 NAND Interface Modeling With Queues

In our modeling of the SSD system, there are multiple chan-
nels3 each of which is connected to the NAND flash package
which consists of multiple NAND flash chips. Each channel
is assumed to have its queue due to the presence of process-
ing speed variations across different memory chip interfaces
(see Fig. 1a). The speed variations arise from the various
types of random noise that degrades the accuracy of the
LDPC decoder input, which in turn affects the LDPC code
decoding failure probability and the number of multiple
sensing/read operations to generate soft read values of
the cells for the LDPC decoder. Such speed variations tend
to be large especially in high-performance SSDs due to the
large number of NAND chips deployed. The pages read off
each channel are typically protected by ECC. Our assump-
tion here, however, is that there are occasional hard errors
that cannot be corrected at this level. This might be due to
bad blocks, dies or chips. In this sense, NAND elements
deployed across distinct NAND flash packages that are con-
nected with different flash channels can be interpreted as
data nodes in distributed storage with their own queue.
This view is consistent with some of the existing high-
performance enterprise SSD architectures [39], where sepa-
rate NAND controllers or caches/buffers are employed that
help smooth out the access speed variations across the par-
allel NAND channel interfaces [40]. Fig. 1b shows the fork-
join queuing model [41] where incoming job requests are
split into n parallelized queues. The fork-join queue has
been widely adopted for describing the parallel and distrib-
uted processing systems. In this paper, the NAND flash
interface in Fig. 1a is modeled as a queuing model as
described in Fig. 1b.

For the reader’s convenience, key parameters extensively
used in this paper are briefly defined in Table 1.

4 LAYERED CODING STRUCTURE

In order to provide additional data protection to correct full
page/block/die failures, we introduce the high-level era-
sure code as the outer ECC across NAND elements. It is a
similar concept to striping in the RAID viewpoint. Such a
combination of an inner ECC and an outer ECC across the
NAND elements forms a layered coding structure in Fig. 2.
Soft-decision ECCs commonly used in practical SSDs have
significantly stronger error correction capability than hard-
decision ECCs such as the Bose-Chaudhuri-Hocquenghem
(BCH) code [2]. However, an increased latency caused by
multiple retries of read-voltage sensing is inevitable to
obtain stronger error correction performance. This structure
invokes the outer ECC each time the inner ECC (e.g., LDPC
codes) decoding step fails (see Fig. 3). Latency caused by
consecutive read retries of the LDPC code can be reduced
by the help of the outer high-level erasure code. We wish to
improve the read access time and NAND element failure
tolerance by leveraging the outer code.

Incorporating the outer ECC in the memory system, we
propose a frameworkwherein theNANDmemory interfaces

Fig. 1. NAND flash interface as a queuing model. (a) NAND interface
with n channels combating latency variations. (b) Fork-join queuing
model with n queues.

3. Channels refer to the paths that connect the SSD controller to the
NAND flash memory to carry traffic. Multiple channels enable parallel
read/write operations of data.

PARK AND MOON: IMPROVING SSD READ LATENCY VIA CODING 1811

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on November 22,2020 at 14:16:59 UTC from IEEE Xplore. Restrictions apply.

in an SSD act as distributed data storage. Layered coding and
distributed storage coding clearly have parallels in using
ECCs across the distinct nodes to provide node-level data
reliability.

We consider the following storage system which is mod-
eled using the ðn; kÞ fork-join system introduced in [14].

Definition 2. An ðn; kÞMDS-outer-coded layered coding sys-
tem (or simply ðn; kÞ layered coding) consists of n NAND ele-
ments which are deployed across the distinct NAND flash
packages.

� Data is split into k chunks and then stored over n
nodes after applying an ðn; kÞMDS code.

� By the property of ðn; kÞMDS code, accessing any k out
of n nodes enables reconstruction of the desired data.

� Each incoming request of a read job is forked into n
first-come-first-served (FCFS) queues and any k fin-
ished requests out of n complete the corresponding job,
after which the remaining n� k unfinished requests
can be discarded from the queues.

Here we assume a negligible request cancellation over-
head, which means that the queue can serve the next waiting
request immediately after a request is canceled.Moreover, the
encoding/decoding of the outer code requires no significant

additional cost, as it takes simple exclusive OR operations as
in RAID SSDs [39]. It is also noteworthy that the ðn; kÞ layered
coding structure assumes that a data chunk larger than n
pages is accessed at once, which is valid in usual NAND flash
applications. Then, most of the data can benefit from layered
coding by forming n-page groups, and there exists only a
small or even a negligible portion of data that cannot.

The nodes in layered coding are deployed in the different
NAND flash packages. This allows us to assume that the
failures occur independently. Although high-level coding
can have a page/block/chip as a node, we confine our inter-
est for the time being to the high-level coding with pages as
its nodes for ease of presentation. Even so, the models and
analyses can be easily extended to the case where high-level
coding regards other NAND elements as nodes.

For illustrative purposes, consider the fork-join model in
Fig. 4 corresponding to ðn; kÞ ¼ ð10; 4Þ. This ð10; 4Þ layered
coding has a page as its node. We denote each page
accessed by job X by “Page X-Y”. Y denotes the index of a
flash package where Page X-Y stored. This means that pages
with the same X index compose a ð10; 4Þ high-level code.
Read job 1 has 10 requests to access Page 1-1 to Page 1-10.
When a request approaches the head of a queue, the corre-
sponding page is accessed. In Fig. 4, since four (Pages 1-2,
1-3, 1-5, 1-8) out of ten pages for job 1 have already been

Fig. 2. Example of the layered coding structure. In this example, the
pages deployed across the distinct flash packages are the nodes of the
outer MDS code. Each page is protected by an inner LDPC code. The
shaded pages are the nodes of high-level coding represented by a box in
dashed red line.

TABLE 1
Glossary of Important Notation

Notation Description

� rate of the read request arrivals
N number of possible outcomes per a sensing level
Nmax maximum number of the possible outcomes in the read access time distribution
Ns maximum number of sensing level
Pfail;i probability of read request failure at the ith sensing level

P
ð1Þ
fail probability that hard decision decoding fails

tsen�ref latency of sensing reference hard-decision voltages
tsen latency of sensing a set of additional voltage levels to yield one soft-decision quantization level
txfer latency of transferring the additional data read by increasing a sensing level from the flash to the controller
tdec decoding delay of an LDPC code
tprog programming latency
Np number of pages to be reconstructed

Fig. 3. Flow of the ðn; kÞMDS-coded layered coding structure.

1812 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 12, DECEMBER 2020

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on November 22,2020 at 14:16:59 UTC from IEEE Xplore. Restrictions apply.

served, the remaining six tasks for job 1 abandon (presented
by dashed squares in the queues) their queues and job 1
exits the system.

5 ANALYSIS OF READ ACCESS TIME

For latency analysis, we assume that the read requests occur
randomly according to the Poisson process with rate � as in
[14], [15]. The read access time at each node is governed by
the behavior of memory sensing and decoding as we shall
see in Section 5.1. Note that it is possible to assume that the
read access time at each node is independent since nodes
are deployed across the different flash packages. The reason
is that the LDPC decoder failure rate largely depends on
read noise (system noise) and write noise (due to media as
well as written input). It is obvious that the read system
noise (e.g., electronic circuit noise) across different channels
are independent.4

5.1 Read Access Latency in SSDs

Soft-decision ECCs (e.g., LDPC codes) perform significantly
better than hard-decision ECCs such as the BCH codes [2].
Error correction capability of LDPC codes highly depends
on the quality of input information. Such input information
is computed by using the digitally quantized threshold volt-
age of the memory cells in a page from successive multiple
read decisions. Fig. 5 illustrates progressive sensing and
decoding [2] for the multi-level-cell (MLC) NAND flash
channel. Once decoding fails following hard-decision sens-
ing, the controller invokes soft-decision LDPC code decod-
ing. To do this, the sensing level between the adjacent
storage states increases by one. The procedure is repeated
until LDPC code decoding succeeds or the highest sensing
precision is reached. The use of soft-decision thus causes
severe latency overhead due to the multiple read operations
with different reference voltages.

Let Ns denote the maximum sensing level. Based on the
progressive sensing and decoding technique, the memory

sensing and decoding latency to reach the ith sensing level
is defined as follows.

Definition 3. We define the memory sensing and decoding
latency where decoding succeeds at the ith sensing level, for a
givenNs and an integer i such that 1 � i � Ns by

ti ¼ tsen�ref þ txfer þ tdec þ ði� 1Þðtsen þ txfer þ tdecÞ;
(1)

where tsen�ref denotes the latency of sensing reference hard-
decision voltages, tsen is the latency of sensing a set of addi-
tional voltage levels to yield one soft-decision quantization
level (denoted by same colored lines in Fig. 5), txfer represents
the latency of transferring the data read by increasing a sensing
level from the flash to the controller, and tdec indicates the
decoding delay of an LDPC code.

Note that ti is undefined for i > Ns and we declare that
the read from the ðn; kÞ layered coding system fails as
described in Fig. 3.

Before we discuss the distribution of the read access time,
we present our assumptions as follows. Let Nmax denote the
maximum number of the possible outcomes in the read
access time distribution. Then, assume that (a) the possible
outcomes of the read access time are scattered about ti and
are represented by N ð¼ Nmax=NsÞ5 equally spaced values
with a maximum dispersion of ati (on one side) to reflect
the data’s spread from the mean in reality, where a is a dis-
persion coefficient,6 and that (b) each ith set of the N possi-
ble outcomes representing the ith sensing level satisfies the
discrete uniform distribution on ½tið1� aÞ; tið1þ aÞ�, which,
as N grows, tends to a continuous distribution. The disper-
sion comes from the assumption that nodes of ðn; kÞ layered
coding are deployed across the multiple distinct NAND
flash packages. We model the local distribution associated
with each sensing quantization level to be a bounded uni-
form distribution from the following reasons: For any given
quantization level, there is clearly a minimum possible read
time. The read delay is also upper-bounded because a maxi-
mum limit is always set in practice for the LDPC decoder
iteration for a given quantization level. Assuming unifor-
mity within the upper/lower bounds simply reflects the
maximum uncertainty on the actual read latency inside
these bounds.

Fig. 4. Fork-join queuing model with n queues. For an ðn; kÞ ¼ ð10; 4Þ
MDS code under consideration, accessing any four out of ten pages
complete the corresponding job.

Fig. 5. Hard- and soft-decision voltage sensing for the multi-level-cell
(MLC) NAND flash.

4. Even though the physical media age together and thus the aver-
age decoding errors may increase together between two different
NAND chips, the media noise processes as well as the written local
data are independent across different chips.

5. We assume thatNmax is divisible byNs for simplicity.
6. In this assumption, the amount of spread increases as ti increases,

since a is fixed. As the number of sensing increases, the uncertainties
associated with individual read retries add up and it is natural to
assume a wider local variation with a larger number of read retries.

PARK AND MOON: IMPROVING SSD READ LATENCY VIA CODING 1813

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on November 22,2020 at 14:16:59 UTC from IEEE Xplore. Restrictions apply.

In this work, we present the analysis of read access time
considering two types of failure in Definition 1. The read
request failure is included in the analysis by assuming the
progressive sensing and decoding and using the definition
of latency that grows with an increasing sensing level as in
(1). In this section, we first focus on the latency analysis for
the system having read failures only, and the analysis con-
sidering both the read and NAND element failures is dealt
with in Sections 6 and 7.

5.2 An Upper Bound on the Read Access Time

Exact latency analysis of the ðn; kÞ fork-join system is diffi-
cult. Only bounds are known even for the ðn; kÞ fork-join
system with no failure events [14]. We also focus on the
bounds on the mean read access time. We confine our inter-
est to the upper bounds as they can give enough insights
into the read latency by providing the maximum average
cost in terms of latency.

For the latency analysis, let Pfail;i denote the probability of
read request failure at the ith sensing level. We further

define: P
ði�1Þ
fail ,

Qi�1
i0¼1 Pfail;i0 for integer i such that 1 � i � Ns

and P
ð0Þ
fail , 1. Here, P

ð1Þ
fail denotes the probability that hard

decision decoding fails, and P
ð0Þ
fail , 1 is introduced for ease

of exposition and has no physical meaning. We then present
the distribution of the read access time in the following
proposition.

Proposition 4. The probability mass function of the read access
time distributionX is given by

pj , Pr½X ¼ xj� for 1 � j � Nmax

¼ 1

N
P

ði�1Þ
fail ð1� Pfail;iÞ;

(2)

where

xj ¼ti 1� aþ 2a

N � 1
ðj�Nði� 1Þ � 1Þ

� �
;

i ¼dj=Ne :
(3)

Proof. The probability that LDPC code decoding succeeds
at the ith sensing level is represented by

Pr½T ¼ ti� ¼ P
ði�1Þ
fail ð1� Pfail;iÞ for 1 � i � Ns: (4)

From Definition 3 and the fact that the ith set of N read
access time samples lies in the range of ½tið1� aÞ; tið1þ aÞ�
as depicted in Fig. 6, we represent a sample of read access
time xj as follows:

xj ¼ ti 1� aþ 2a

N � 1
ðj�Nði� 1Þ � 1Þ

� �
:

The probability mass function ofX is then given by

pj , Pr½X ¼ xj� ¼ 1

N
Pr½T ¼ ti�; (5)

where the last equality in (5) follows since each set of the
possible outcomes of the read access time includes N
points. Plugging (4) into (5), we have the proposition. tu
Fig. 6 shows the read access time distribution in Proposi-

tion 4. The probability pj , Pr½X ¼ xj� shall be provided in
Proposition 4. Note that the probability pj , Pr½X ¼ xj�
highly depends on the LDPC decoding performance as
described in Eqs. (4) and (5). Therefore, the relative magni-
tude of the probability at each sensing level may vary
depending on RBER.

Using the distribution given in Proposition 4, we state an
upper bound on the mean read access time as follows.

Theorem 5. Assuming no NAND element failure occurs, the
mean read access time of the ðn; kÞ MDS-outer-coded layered
coding system is upper bounded by

S ¼
XNmax

j¼1

Xn
l¼k

n

l

� �
xjðRj;l �Rj�1;lÞ (6)

þ �
PNmax

j¼1

Pn
l¼k

n
l

� �
x2
j Rj;l �Rj�1;l

� �
2 1� �

PNmax
j¼1

Pn
l¼k

n
l

� �
xjðRj;l �Rj�1;lÞ

� � ; (7)

provided

�
XNmax

j¼1

Xn
l¼k

n

l

� �
xjðRj;l �Rj�1;lÞ < 1; (8)

where Rj;l , rljð1� rjÞn�l and rj ¼ 1� P
ði�1Þ
fail

1� j
N � ði���

1ÞÞð1� Pfail;iÞÞ.
Proof. In order to obtain an upper bound, we resort to the

split-merge system as in [42], [43], which is a degraded
version of the fork-join system where all n nodes are kept
from continuing with the next job until k out of n requests
are served. The mean access time of the split-merge sys-
tem is modeled as an M=G=1 system7 with the service
time governed by kth order statistic. The kth order statis-
tic is defined as the kth smallest sample of n random vari-
ables [45].

Let X1; X2; . . .; Xn be random samples from a discrete
distribution with the probability mass function fXðxjÞ ¼
pj, where x1 < x2 < . . . are the possible samples of X.
For a sample of size n, let X1:n;X2:n; . . .; Xn:n denote the
order statistics from the sample. Then the kth order sta-
tistic from the sample is given by [46]

Pr½Xk:n ¼ xj� ¼
Xn
l¼k

n

l

� ��
rljð1� rjÞn�l � rlj�1ð1� rj�1Þn�l

�
;

where r0 ¼ 0; r1 ¼ p1; r2 ¼ p1 þ p2; . . .; rj ¼ p1 þ p2 þ . . .þ
pj;

Fig. 6. Illustration of the read access time distribution at a page.

7. An M=G=1 queue is a single-server queuing system where arriv-
als are Markovian and the service times have a general distribution [44].

1814 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 12, DECEMBER 2020

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on November 22,2020 at 14:16:59 UTC from IEEE Xplore. Restrictions apply.

For the read time distribution of (2),

rj ¼ 1� P
ði�1Þ
fail

1� j

N
� ði� 1Þ

� �
1� Pfail;i

� �� �
;

(9)

where i ¼ j=Nd e.
The Pollaczek-Khinchin mean-value formula [47]

gives the mean access time of an M=G=1 system S in
terms of its first two moments.

S ¼ E½Xk:n� þ �E½X2
k:n�

2ð1� �E½Xk:n�Þ : (10)

The mth moment of the read access time distribution is
given by

E½Xm
k:n� ¼

XNmax

j¼1

xm
j Pr½Xk:n ¼ xj�

¼
XNmax

j¼1

Xn
l¼k

n

l

� �
xm
j ðRj;l �Rj�1;lÞ;

(11)

where Rj;l , rljð1� rjÞn�l and rj is defined in (9).
The condition in (8) is from the stability requirement

for theM=G=1 queue, i.e., �E½Xk:n� < 1. tu
Note that (7) is composed of the two separate terms that

are the mean actual read access time and mean waiting time
in queues. The stability condition requirement in (8) guaran-
tees the queue length not to increase without bound.

6 ANALYSIS OF READ ACCESS TIME WITH

INSTANTANEOUS REPAIR FROM NAND ELEMENT

FAILURES

6.1 Repair Under the IR Policy

In this section, we provide an analysis of the read access
time including the presence of NAND element failures in
addition to considering read request failures only as in
Section 5. Queuing with breakdown or failure of queues can
be interpreted as queuing with preemptive resume priority
[48]. Under the preemptive resume priority policy, the ser-
vice is interrupted when a higher priority request arrives
(see Fig. 7). Assume that we have two classes of priorities

(c 2 f1; 2g), where jobs of each class include nðcÞ nodes. We
denominate the normal job to access the node as a regular
read job. When a NAND element failure event occurs, we
imagine that a virtual repair job enters the system at that
moment. We give a higher priority to the repair job (class
c ¼ 1) and a lower priority to the read job (class c ¼ 2). The
read requests at the heads of the queues are interrupted
immediately when a repair job (i.e., NAND element failure
event) arrives. Read requests resume from the point of inter-
ruption once the repair requests have been served. In this
work, we refer to such a repair policy as IR.

Under the IR policy, once a block failure is detected, the
neighbors of the failed block embark on a reconstruction
phase to maintain the desired redundancy level. Here, we
are speaking of the block failure since it is the most typical
form of NAND element failure in practical SSDs. Through-
out the remainder of our analysis, we shall focus on block
failures. We shall also consider the bad blocks detected by
the failure of the program operation, as typically happens in
real SSDs. Note that bad block detection is done indepen-
dently of the current read job in the queue. When the pro-
gram operation fails, the contents of the pages already
written in the corresponding bad block need to be duplicated
to another block. The repair process takes the k fastest copy-
ing requests out of the n� 1 nodes. For copying the contents
of the failed block in the repair process, we reserve a small
memory buffer space which is in line with the typical mem-
ory buffer size in real SSDs [49], [50]. Each block typically
contains hundreds to thousands of pages in SSDs and the
failed block is reconstructed in a page-by-page fashion.8

Both the repair job and the read job can be described as a col-
lection of the k fastest requests and thus be represented by
the kth order statistic XðcÞ;k:nðcÞ . Note that nð1Þ ¼ n� 1 and
nð2Þ ¼ n for our purposes. To reduce notational burden, we
shall simplywriteXk:nðcÞ instead ofXðcÞ;k:nðcÞ .

We focus on the repair from a single block failure since it
is the dominant failure pattern. Multiple block failures can
be handled by consecutive reconstructions from single
block failures. An ðn; kÞ MDS coded storage system, in fact,
tolerates n� k failures without repair. Thus, it would be
possible to build a more elaborated model that continues
working without entering the repair phase until t failures
occur, where t ð� n� kÞ is a threshold of the failure toler-
ance. However, we leave this for future work.

6.2 Analysis of Read Access Time

Under the additional consideration of NAND element fail-
ures, we also obtain an upper bound for the mean read
access time by taking the split-merge system, the degraded
version of ðn; kÞ fork-join system. We make certain assump-
tions on the node failures and read jobs. The failures and
read jobs occur randomly (according to the Poisson process
with rates �ð1Þ and �ð2Þ, respectively). The read time in this
section is identically defined to (1) even with the read fail-
ures considered (i.e., tð2Þ;i ¼ ti and xð2Þ;j ¼ xj). The repair
time (or, equivalently, service time of the repair jobs) is
defined similarly to (1), but the repair job essentially

Fig. 7. The reconstruction process from a NAND block failure under the
IR policy. When a NAND block fails, regular read jobs denoted by the
square boxes are interrupted, and the virtual repair job requests appear
(represented by the rectangular boxes marked by “R”) and move to the
head of queues (under preemptive priority). The n� 1 intact nodes help
the reconstruction of the failed node’s contents to a new location. Taking
the k fastest copying requests out of n� 1 is sufficient for the
reconstruction.

8. Since a block failure essentially means the failure of all pages in it,
the two terms - node failure and NAND element failure - are used inter-
changeably in the remainder of this paper.

PARK AND MOON: IMPROVING SSD READ LATENCY VIA CODING 1815

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on November 22,2020 at 14:16:59 UTC from IEEE Xplore. Restrictions apply.

consists of reconstructing the data of the failed node using
information from adjacent nodes and programming it to the
clean location. Thus, the memory sensing, decoding and
programming latency to reach the ith sensing level is given
by the following definition.

Definition 6. We define the memory sensing and decoding
latency of the repair job where decoding of the read operation
for repair succeeds at the ith sensing level, for a given Ns and
an integer i such that 1 � i � Ns as follows:

trep;i ¼ ti þ tprog

¼ tsen�ref þ txfer þ tdec

þ ði� 1Þðtsen þ txfer þ tdecÞ þ tprog;

(12)

where tprog denotes the programming latency due to the recon-
struction of a failed NAND element. We assume the block-level
failure here since it represents the typical NAND element
failure.

From this definition, note that the repair job also requires
to read data to reconstruct the failed node. Using Definition
6, we establish the following definition for the memory
sensing and decoding latency of the repair job and read job
at each sensing level under the IR policy. We discuss the
number of nodes involved in each class of job as well. The
parameters are based on the jobs of two different priority
classes.

Definition 7. Under the IR policy, for an ðn; kÞ MDS-outer-
coded layered coding system, the number of nodes involved in
the repair and read job (denoted by nð1Þ and nð2Þ, respectively),
and the memory sensing and decoding latency of the repair and
read job where decoding of the read operation succeeds at the
ith sensing level (denoted by tð1Þ;i and tð2Þ;i, respectively) for
integer i such that 1 � i � Ns are defined as follows:

nð1Þ ¼ n� 1; tð1Þ;i ¼ Nptrep;i; (repair job requests)

nð2Þ ¼ n; tð2Þ;i ¼ ti : (read job requests);

where Np denotes the number of pages to be reconstructed.9

In the same sense as Section 5, but considering the
NAND element failure events, we present the read time dis-
tribution reflecting the data’s spread from the mean in the
following proposition.

Proposition 8. For a priority class c 2 f1; 2g, the probability
mass function of the read time distribution XðcÞ in the existence
of NAND element failure events is given by

pðcÞ;j , Pr½XðcÞ ¼ xðcÞ;j� for 1 � j � Nmax

¼ 1

N
P

ði�1Þ
fail ð1� Pfail;iÞ;

(13)

where

xðcÞ;j ¼ tðcÞ;i 1� aþ 2a

N � 1
½j�Nði� 1Þ � 1�

� 	
: (14)

Proof. Since this proposition expands Proposition 4 for two
priority classes, we have this proposition by simply replac-
ingX, xj and ti withXðcÞ, xðcÞ;j and tðcÞ;i, respectively. Pfail;i

which means the probability of read request failure at the
ith sensing level is commonly used for both priority clas-
ses to reflect the effect of the read failures; the repair job
also includes sensing and decoding of the data to recon-
struct the failed node. tu
We also focus on obtaining an upper bound on the mean

read access time as we did in Section 5.

Theorem 9. Under the IR policy, the mean read access time of
the repair and read job in the ðn; kÞ MDS-outer-coded layered
coding system is upper bounded as follows:

� c ¼ 1 (for repair job requests)

S
ð1Þ
IR ¼

XNmax

j¼1

Xnð1Þ
l¼k

nð1Þ
l

� �
xð1Þ;jD

ð1Þ
j;l

þ �ð1Þ
2

XNmax

j¼1

Xnð1Þ
l¼k

nð1Þ
l

� �
x2ð1Þ;jD

ð1Þ
j;l

� 1� �ð1Þ
XNmax

j¼1

Xnð1Þ
l¼k

nð1Þ
l

� �
xð1Þ;jD

ð1Þ
j;l

 !�1

:

(15)

� c ¼ 2 (for read job requests)

S
ð2Þ
IR ¼

XNmax

j¼1

Xnð2Þ
l¼k

nð2Þ
l

� �
xð2Þ;jD

ð2Þ
j;l

� 1� �ð1Þ
XNmax

j¼1

Xnð1Þ
l¼k

nð1Þ
l

� �
xð1Þ;jD

ð1Þ
j;l

 !�1

þ 1

2

X2
v¼1

XNmax

j¼1

Xnð1Þ
l¼k

nðvÞ
l

� �
�ðvÞx2

ðvÞ;jD
ðvÞ
j;l

� 1� �ð1Þ
XNmax

j¼1

Xnð1Þ
l¼k

nð1Þ
l

� �
xð1Þ;jD

ð1Þ
j;l

 !�1

� 1�
X2
v¼1

XNmax

j¼1

XnðvÞ
l¼k

nðvÞ
l

� �
�ðvÞxðvÞ;jD

ðvÞ
j;l

 !�1

:

(16)

where D
ðcÞ
j;l , R

ðcÞ
j;l �R

ðcÞ
j�1;l, R

ðcÞ
j;l , rlðcÞ;jð1� rðcÞ;jÞnðcÞ�l and

rðcÞ;j ¼ 1� P
ði�1Þ
fail 1� j

N � ði� 1Þ� �ð1� Pfail;iÞ
� �

.

The stability condition is

X2
v¼1

XNmax

j¼1

XnðvÞ
l¼k

nðvÞ
l

� �
�ðvÞxðvÞ;jD

ðvÞ
j;l < 1 : (17)

Proof. Let Xk:nðcÞ (c 2 f1; 2g) be the read access time distri-
bution for the priority class c, which is based on the kth
order statistic from the nðcÞ samples. Under the IR policy,
the repair job and read job are given the priority classes
c ¼ 1 and c ¼ 2, respectively. As can be seen in Definition
7, tð1Þ;i ¼ trep;i and tð2Þ;i ¼ ti. Substituting tðcÞ;i into (14)
provides xðcÞ;j for the both classes. Then, we have

9. We assume that the failure of program operation, if occurs, takes
place when programming to the blocks in which about half of the pages
are already written. 2Np is thus the number of pages in a block.

1816 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 12, DECEMBER 2020

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on November 22,2020 at 14:16:59 UTC from IEEE Xplore. Restrictions apply.

Pr½Xk:nðcÞ ¼ xðcÞ;j�

¼
XnðcÞ
l¼k

nðcÞ
l

� ��
rlðcÞ;jð1� rðcÞ;jÞnðcÞ�l � rlðcÞ;j�1ð1� rðcÞ;j�1ÞnðcÞ�l

�
;

(18)

where rðcÞ;0 ¼ 0; rðcÞ;1 ¼ pðcÞ;1; rðcÞ;2 ¼ pðcÞ;1 þ pðcÞ;2; . . .; rðcÞ;j ¼
pðcÞ;1 þ pðcÞ;2 þ . . .þ pðcÞ;j;

For the read time distribution of (13),

rðcÞ;j ¼ 1� P
ði�1Þ
fail 1� j

N
� ði� 1Þ

� �
ð1� Pfail;iÞ

� �
:

Using (18) and xðcÞ;j obtained above, the mth moment
of Xk:nðcÞ under the read time distribution is calculated
from

E½Xm
k:nðcÞ � ¼

XNmax

j¼1

xm
ðcÞ;j Pr½Xk:nðcÞ ¼ xðcÞ;j�

¼
XNmax

j¼1

XnðcÞ
l¼k

nðcÞ
l

� �
xm
ðcÞ;j R

ðcÞ
j;l �R

ðcÞ
j�1;l

� �
;

(19)

where R
ðcÞ
j;l , rlðcÞ;jð1� rðcÞ;jÞnðcÞ�l.

Since we modeled the degraded version of the pro-
posed system under the IR policy as an M=G=1 queue
with preemptive resume priority, the average delay for
class c, denoted by S

ðcÞ
IR , is written as [44]

S
ðcÞ
IR ¼

E½Xk:nðcÞ �
1�Pc�1

v¼1 �ðvÞE½Xk:nðvÞ �

þ
Pc

v¼1 �ðvÞE½X2
k:nðvÞ �

2ð1�Pc�1
v¼1 �ðvÞE½Xk:nðvÞ �Þð1�

Pc
v¼1 �ðvÞE½Xk:nðvÞ �Þ

:

(20)

Substituting (19) into (20) and definingD
ðcÞ
j;l , R

ðcÞ
j;l �R

ðcÞ
j�1;l

yield the upper bounds of the mean read access time SðcÞ
for class c (c 2 1; 2). The condition in (17) is from the sta-
bility requirement for the M=G=1 queue, namely:
�ð1ÞE½Xk:nð1Þ � þ �ð2ÞE½Xk:nð2Þ � < 1. tu
Note that (20) reduces to a form similar to (10) for c ¼ 1,

since a job of class 1 cannot see any other jobs of higher pri-
ority than itself while it stays in the queue.

The upper bound on the mean read access time of the
ðn; kÞ MDS-coded memory system under read request fail-
ure and NAND element failure, SIR, is the expected time
between a job arrival and the point of service completion
where any k out of n requests have been served. For the sys-
tem under consideration, it is given by the weighted sum of
the mean read access time of two classes as follows:

SIR ¼ �ð1ÞS
ð1Þ
IR þ �ð2ÞS

ð2Þ
IR

�ð1Þ þ �ð2Þ
:

If the stability condition in (17) is not satisfied, the mean
latency of the corresponding M=G=1 queuing system will
grow without bound. The violation of the stability condition
causes the mean latency of the read job (or both the read
and repair jobs) to be infinite. Namely, the violation of the
stability condition means that there exists a certain priority

class c so that jobs with a priority class lower than c have
the mean latency growing without bound.

7 ANALYSIS OF READ ACCESS TIME WITH

POSTPONED REPAIR FROM NAND ELEMENT

FAILURES

7.1 Repair Under the PR Policy

In Section 6, we have assumed that the read job requests are
interrupted and the system enters the reconstruction phase
every time the NAND element failure events occur. How-
ever, this might be impractical under certain circumstances
since all the read job requests would have to be suspended
and wait for the failed node to recover. To get around this
issue, we introduce in this section the PR policy wherein the
system suspends the repair process until the read request
queue is idle. The repair process is depicted in Fig. 8.

The desired upper bound on the mean read access time
of this system can be represented as an M=G=1 queue with
non-preemptive priority [48]. Under the non-preemptive pri-
ority, the service continues without interruption even if a
higher priority job arrives during the service time of an
undergoing job. Here we assume two classes of priority as
in Section 6. For the system under consideration here, we
assign a higher priority (class c ¼ 1) to the read jobs and a
lower priority (class c ¼ 2) to the repair jobs (or failure
events). Since the read job is given the higher priority for
service, even if a node failure occurs while a read job is
being performed, the intact nodes can continue the read job.
The repair job is executed when there is no read request in
the queue because it has a lower priority. From the assump-
tion that the non-preemptive priority is given in this case,
the repair job is not preempted by the read jobs when the
repair job is being served. This modeling is justified from
the observation that the arrival rate of the failure is gener-
ally lower compared to the arrival rate of the read jobs.

In an attempt to simplify the problem, we assume that the
number of intact blocks that can be accessed is maintained
even when there occurs a block failure. To do so, suppose that
we have one backup block that supports the coded data read
from the time that a block failure occurs until the reconstruction
is done. Then, we have nð1Þ ¼ nð2Þ ¼ n under the PR policy as
described in Definition 10. Under this scenario, the actual cod-
ing overhead of the MDS code in the proposed system is

Fig. 8. The reconstruction process from a NAND block failure under the
PR policy. Even if a NAND block fails, regular read jobs denoted by the
square boxes continue to be served, and the virtual repair job requests
having a lower priority appear (represented by the rectangular boxes
marked by “R”) and move to the tail of queues. When the request queue
is idle, the reconstruction process starts. The n intact nodes including
the backup block help the reconstruction of the failed block’s contents to
a new location. Taking the k fastest copying requests out of n is sufficient
for the reconstruction.

PARK AND MOON: IMPROVING SSD READ LATENCY VIA CODING 1817

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on November 22,2020 at 14:16:59 UTC from IEEE Xplore. Restrictions apply.

k=ðnþ 1Þ instead of k=n. However, the backup block is acti-
vated onlywhen there exists a failed block, whichmeans that it
is used for a limited time period. We thus stick to the notation
of ðn; kÞ MDS-outer-coded layered coding for this system. To
guarantee a seamless transition to the use of the backup block
instead of the failed block, it is further assumed that job
requests in the queue of the failed block can be easily moved to
the queue of the new location.

7.2 Analysis of Read Access Time

Since we modeled the ðn; kÞ MDS-outer-coded layered cod-
ing system under the PR policy as an M=G=1 queue with
non-preemptive priority, first we present the latency distri-
bution for jobs of each class. We use the following definition
of the memory sensing and decoding latency.

Definition 10. Under the PR policy, for an ðn; kÞ MDS-outer-
coded layered coding system, the number of nodes involved in
the read and repair job (denoted by nð1Þ and nð2Þ, respectively),
and the memory sensing and decoding latency of the read and
repair job where decoding of the read operation succeeds at the
ith sensing level (denoted by tð1Þ;i and tð2Þ;i, respectively) for
integer i such that 1 � i � N are defined as follows.

nð1Þ ¼ n ; tð1Þ;i ¼ ti ; ðreadjobrequestsÞ
nð2Þ ¼ n ; tð2Þ;i ¼ Nptrep;i : ðrepairjobrequestsÞ:

Using Definition 10, we now present the mean read
access time of the proposed system under the PR policy.

Theorem 11. Under the PR policy, the mean read access time of
the repair and read job in the ðn; kÞ MDS-outer-coded layered
coding system is upper bounded as follows:

� c ¼ 1 (for read job requests)

S
ð1Þ
PR ¼

XNmax

j¼1

Xnð1Þ
l¼k

nð1Þ
l

� �
xð1Þ;jD

ð1Þ
j;l

þ 1

2

X2
v¼1

XNmax

j¼1

XnðvÞ
l¼k

nðvÞ
l

� �
�ðvÞx2ðvÞ;j

�DðvÞ
j;l 1� �ð1Þ

XNmax

j¼1

Xnð1Þ
l¼k

nð1Þ
l

� �
xð1Þ;jD

ð1Þ
j;l

 !�1

:

(21)

� c ¼ 2 (for repair job requests)

S
ð2Þ
PR ¼

XNmax

j¼1

Xnð2Þ
l¼k

nð2Þ
l

� �
xð2Þ;jD

ð2Þ
j;l

þ 1

2

X2
v¼1

XNmax

j¼1

XnðvÞ
l¼k

nðvÞ
l

� �
�ðvÞx2

ðvÞ;jD
ðvÞ
j;l

� 1� �ð1Þ
XNmax

j¼1

Xnð1Þ
l¼k

nð1Þ
l

� �
xð1Þ;jD

ð1Þ
j;l

 !�1

� 1�
X2
v¼1

XNmax

j¼1

XnðvÞ
l¼k

nðvÞ
l

� �
�ðvÞxðvÞ;jD

ðvÞ
j;l

 !�1

:

(22)

The stability condition is

X2
v¼1

XNmax

j¼1

XnðvÞ
l¼k

nðvÞ
l

� �
�ðvÞxðvÞ;jD

ðvÞ
j;l < 1 : (23)

Proof. The overall proof process is similar to the proof of
Theorem 9. As in Section 6, consider Xk:nðcÞ (c 2 f1; 2g),
the read access time distribution for priority class c.
Under the PR policy, the read and repair job has the prior-
ity classes c ¼ 1 and c ¼ 2, respectively. Substituting
tð1Þ;i ¼ ti and tð2Þ;i ¼ trep;i in Definition 10 into (18),
Pr½Xk:nðcÞ ¼ xðcÞ;j� can be similarly obtained by using the

approach of the proof for Theorem 9. We then easily cal-

culate E½Xm
k:nðcÞ � associated with the PR policy by using

(19). The average delay for class c under non-preemptive

priority policy, denoted by S
ðcÞ
PR, is written as [44]

S
ðcÞ
PR ¼ E½Xk:nðcÞ �

þ
P2

v¼1 �ðvÞE½X2
k:nðvÞ �

2ð1�Pc�1
v¼1 �ðvÞE½Xk:nðvÞ �Þð1�

Pc
v¼1 �ðvÞE½Xk:nðvÞ �Þ

:

(24)

Substituting E½X2
k:nðcÞ � and E½X1

k:nðcÞ � which are calculated

above into (24) yields the upper bounds of the mean read

access time.
The condition in (23) is also from the stability require-

ment for the M=G=1 queue, namely: �ð1ÞE½Xk:nð1Þ � þ
�ð2ÞE½Xk:nð2Þ � < 1. The stability condition is the same as

given in (17). tu
Note that (21) automatically leads to the additional

latency burden due to the effect of NAND element failures
as stated below.

Corollary 12 (Impact of NAND element Failures). Con-
sider an ðn; kÞ MDS-outer-coded layered coding system under
the PR policy. The additional latency from NAND element fail-
ure is represented as follows:

1

2

XNmax

j¼1

Xnð2Þ
l¼k

nð2Þ
l

� �
�ð2Þx2

ð2Þ;jD
ð2Þ
j;l

� 1� �ð1Þ
XNmax

j¼1

Xnð1Þ
l¼k

nð1Þ
l

� �
xð1Þ;jD

ð1Þ
j;l

 !�1

:

(25)

Proof. Substituting c ¼ 1 into (24), we have the mean read
access time of the read job

S
ð1Þ
PR ¼ E½Xk:nð1Þ �

þ
�ð1ÞE½X2

k:nð1Þ �
2 1� �ð1ÞE½Xk:nð1Þ �
� �þ �ð2ÞE½X2

k:nð2Þ �
2 1� �ð1ÞE½Xk:nð1Þ �
� � ;

(26)

which is represented by the summation of the mean ser-
vice time of the read job and the mean waiting time of
the read job in the queue. The summation of the first and
second terms in (26) is equivalent to the mean read access

1818 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 12, DECEMBER 2020

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on November 22,2020 at 14:16:59 UTC from IEEE Xplore. Restrictions apply.

time without assuming NAND element failure events.
Therefore, the last term in (26) can be regarded as an
impact of NAND element failure events. Substituting
E½X2

k:nð2Þ � and E½Xk:nð1Þ � associated with the PR policy into

�ð2ÞE½X2
k:nð2Þ �

2 1� �ð1ÞE½Xk:nð1Þ �
� � ;

yields (25). tu
The upper bound on the mean read access time of the

ðn; kÞ MDS-outer-coded memory system under the PR pol-
icy is also given by the weighted sum of the read access
time of two classes as follows:

SPR ¼ �ð1ÞS
ð1Þ
PR þ �ð2ÞS

ð2Þ
PR

�ð1Þ þ �ð2Þ
:

As stated in Section 6, if the stability condition in (23) is not
satisfied, the mean latency of the repair job (or both the
repair and read jobs) will increase without bound.

In the latency analysis, we have not explicitly considered
the background process that can interfere with the read
requests, since this work focuses on the situation where the
read operation is the major burden and how the high-level
coding helps reduce read latency. In addition, as the back-
ground process occurs regardless of the use of layered coding,
the present analysis will allow the assessment of the improve-
ment in the overall latency with the use of layered coding.
Moreover, although we do not consider the background pro-
cess like garbage collection,we do include the effect of the fail-
ure handling process on read latency. Note that under the PR
policy, the failure handling can be regarded as a background
process interferingwith the read process.

8 QUANTITATIVE RESULTS AND DISCUSSION

For numerical simulations in this section, a 1-KB regular
LDPC code of rate 0.8947 is employed as an inner ECCwhich
is designed by using the progressive edge growth (PEG)
algorithm [51]. As an outer ECC with the MDS property, an
RS code is adopted. In our simulation, the number of data
blocks k to be encoded is fixed to 16, in the range of the

typical number for the NAND channels in commercial SSDs
[52], while the number of nodes n is a variable. Here we only
consider the storage overhead from 0 to 4. Higher storage
overhead cases are excluded due to their impracticality.

The parameters related to sensing and decoding are set to
ðtsen�ref ; tsen; txfer; tdecÞ ¼ ð96 s, 96 s, 5 s, 8 s) based on the

measurement results on 25 nm MLC NAND flash memory
chips [2]. Each value is normalized by tsen�ref þ txferþ tdec in

order to represent the read access time for a given RBER in

multiples of the first hard-decision sensing and decoding
delay. a is set to 0.2, which means the measured samples of
the read access time are assumed to be dispersed up to 20
percent [53], [54] from ti’s.

Fig. 9 shows the normalized mean read access time ver-
sus RBER. The bounds are fairly tight to the simulated result
in all cases. We see that coding across NAND elements
gives improved access time. There is a consistent access
time reduction when we put one or more outer ECC parity
nodes compared to the case without an outer RS code. For
example, with an RS code having one or more parity nodes,
we see up to about a 70 percent reduction in the mean read
access time in the RBER region below 0.006. We see that as
the code gets stronger (larger n and/or smaller k=n), the
reduction in read access time becomes more pronounced at
RBERs around 0.006 to 0.008. In the RBER region around
0.008 to 0.011, there is a consistent reduction in latency up
to 10 percent for the systems with layered coding. At the
right end of the plot, we see that the read access time of the
case without the RS code tends to diverge. The read access
time has a “knee” behavior because there exist ranges of tol-
erable RBERs for each level of sensing. The required num-
ber of reads increases in a step-like fashion due to the need
to improve the sensing level as the RBER gets worse.

Fig. 10 presents the results as the read access time versus
RBER with the NAND element failures under the IR policy.
Here we assume Np ¼ 32 and consider the following two
cases of NAND element failure: (Case I) �ð1Þ=�ð2Þ ¼ 0:01 and
(Case II) �ð1Þ=�ð2Þ ¼ 0:1, i.e., the node failures occur 100
times and 10 times less frequently than the read request
arrivals, respectively. The programming delay is set to
tprog ¼ 785.5 s. This parameter is again normalized as in the

Fig. 9. Read access time for the layered RS codes with 1-KB LDPC
codes without NAND element failures. RS codes of different rates k=n
are used for comparison.

Fig. 10. Read access time of the combinations of RS codes and 1-KB
LDPC codes with NAND element failures under the IR policy. RS codes
of different rates k=n are used for comparison.

PARK AND MOON: IMPROVING SSD READ LATENCY VIA CODING 1819

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on November 22,2020 at 14:16:59 UTC from IEEE Xplore. Restrictions apply.

case of the parameters related to sensing and decoding.
Note that n ¼ k is impossible in our setting since the system
cannot tolerate even one node failure in which case the
access time diverges to infinity. Although not shown, we
observed that the bounds were again tight to the simulated
result as in the cases without the NAND element failure.
Coding improves read access time even when there exist
node failures, in addition to enhancing the system reliabil-
ity. The read access time improvement is larger for Case I
with less frequent failure events. For example, in Case I we
see up to about a 45 percent reduction in mean read access
time in the RBER region around 0.006 to 0.008, while Case II
gives about a 40 percent reduction. As the failure events
become more frequent, the amount of reduction in read
access time gets smaller. The read access time here also has
a knee behavior.

Fig. 11 compares the normalized mean read access time
under the IR and PR policies for given RBERs. If the failure
events do not occur frequently, it can be easily predicted
that the difference in read access time between the IR and
PR policies will not be large. Thus we present the result
only with �ð1Þ=�ð2Þ ¼ 0:1 (i.e., the node failures occur 10
times less frequently than the read request arrivals). Recall
that the PR policy reserves one node of the outer code for
backup operations. For the sake of fairness, we compare the
latency of the PR policy with a rate-k=ðn� 1Þ outer code to
the latency of the IR policy with a rate k=n outer code.

The advantage of PR policy is evident when we have four
additional nodes (RS code rate 16/20 for IR and 16/19 for
PR) for layered coding. The PR policy performs better than
the IR policy in most RBER regimes that we are interested
in. However, if there are two additional nodes (RS code rate
16/18 for IR and 16/17 for PR), the PR policy has poor per-
formance compared to the IR policy in some regions where
the latency increases rapidly according to the RBER. This is
because, when using PR policy, one additional node is used
to keep the read operation intact even if the node failure
occurs. It would also be an interesting research topic to
examine the latency gain through a more advanced model
for PR policy that does not use a backup node later.

Figs. 9, 10 and 11 provide important insights into the role
of redundant coding in improving the system’s ability to

tolerate degrading quality of individual NAND channels
while maintaining the same level of read latency. Specifi-
cally, the figures reveal the nontrivial trade-offs between
the read access time and the overhead of outer codes. Based
on this, one can be guided to design the new practical SSD
system maximizing the impact of the additional storage
overhead imposed to improve the read access speed, as the
effect of adding additional nodes varies depending on the
RBER range. For example, in Fig. 9, it is seen that the impact
of two additional nodes of outer coding is several-folds
larger in the RBER region around 0.005 to 0.008 compared
to the remaining RBER region. This observation leads us to
be able to choose the proper number of parity nodes for the
outer code balancing the desired level of read access time
and the storage overhead of outer ECC. In other words, this
type of analysis can provide guidance on the required outer
ECC overhead in achieving a certain level of read access
time improvement given an estimated operating RBER.

A concern may arise for the burden of using additional
nodes to accommodate the parity symbols for the outer
code. However, this layered coding structure offers design
options for high-performance applications where top prior-
ity is placed on minimum latency at the expense of an over-
all code rate loss.

9 CONCLUSION

We have provided a queuing theoretic analysis for SSDs
with parallel NAND channels with varying processing
speeds. The impact of the read failure and the node failure
events on the trade-off between read access time and coding
overhead has been analyzed. An existing ðn; kÞ fork-join
model has been extended to include the NAND-specific
read access time and node failures, and tight upper bounds
on the mean read access time have been derived. Two dif-
ferent ways to mitigate the effect of node failures have been
investigated using the notion of multi-class jobs with differ-
ent priorities. Tolerable limits on the qualities of the physi-
cal NAND components under access time and storage
space constraints can be investigated in this way.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Sukkwang Park for
his helpful advice and comments. This work was supported
in part by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIT)
under Grant No. NRF-2016R1A2B4011298 and Grant NRF-
2019R1I1A2A02061135, and in part by the BK21 Plus. This
article was presented in part at the IEEE International Confer-
ence on Communications (ICC), 2017 [1].

REFERENCES

[1] H. Park and J. Moon, “Improving read access time of high-perfor-
mance solid-state drives via layered coding schemes,” in Proc.
IEEE Int. Conf. Commun., 2017, pp. 1–7.

[2] K. Zhao, W. Zhao, H. Sun, X. Zhang, N. Zheng, and T. Zhang,
“LDPC-in-SSD: Making advanced error correction codes work
effectively in solid state drives,” in Proc. USENIX Conf. File Storage
Technol., 2013, pp. 243–256.

[3] G. Dong, N. Xie, and T. Zhang, “On the use of soft-decision error-
correction codes in NAND flash memory,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 58, no. 2, pp. 429–439, Feb. 2011.

Fig. 11. Read access time of the combinations of RS codes and 1-KB
LDPC codes with NAND element failures under the IR/PR policy. RS
codes of different rates k=n are used for comparison.

1820 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 12, DECEMBER 2020

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on November 22,2020 at 14:16:59 UTC from IEEE Xplore. Restrictions apply.

[4] G. Dong, N. Xie, and T. Zhang, “Enabling NAND flash memory
use soft-decision error correction codes at minimal read latency
overhead,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 9,
pp. 2412–2421, Sep. 2013.

[5] J. Hsieh, C. Chen, and H. Lin, “Adaptive ECC scheme for hybrid
SSD’s,” IEEE Trans. Comput., vol. 64, no. 12, pp. 3348–3361,
Dec. 2015.

[6] R. Liu, M. Chuang, C. Yang, C. Li, K. Ho, and H. Li, “Improving
read performance of NAND flash SSDs by exploiting error local-
ity,” IEEE Trans. Comput., vol. 65, no. 4, pp. 1090–1102, Apr. 2016.

[7] J. Moon, J. No, S. Lee, S. Kim, S. Choi, and Y. Song, “Statistical
characterization of noise and interference in NAND flash memo-
ry,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 8,
pp. 2153–2164, Aug. 2013.

[8] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Threshold voltage
distribution in MLC NAND flash memory: Characterization, anal-
ysis, and modeling,” in Proc. Conf. Des. Autom. Test Europe, 2013,
pp. 1285–1290.

[9] Q. Wu and T. Zhang, “OFWAR: Reducing SSD response time
using on-demand fast-write-and-rewrite,” IEEE Trans. Comput.,
vol. 63, no. 10, pp. 2500–2512, Oct. 2014.

[10] R. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. The-
ory, vol. 8, no. 1, pp. 21–28, Jan. 1962.

[11] N. B. Shah, K. Lee, and K. Ramchandran, “The MDS queue: Ana-
lysing the latency performance of erasure codes,” in Proc. IEEE
Int. Symp. Inf. Theory, 2014, pp. 861–865.

[12] S. Chen et al., “When queueing meets coding: Optimal-latency
data retrieving scheme in storage clouds,” in Proc. IEEE Conf.
Comput. Commun., 2014, pp. 1042–1050.

[13] Y. Xiang, T. Lan, V. Aggarwal, and Y. R. Chen, “Joint latency and
cost optimization for erasure-coded data center storage,” IEEE/
ACM Trans. Netw., vol. 24, no. 4, pp. 2443–2457, Aug. 2016.

[14] G. Joshi, Y. Liu, and E. Soljanin, “Coding for fast content down-
load,” in Proc. Annu. Allerton Conf. Commun. Control, Comput.,
2012, pp. 326–333.

[15] A. Kumar, R. Tandon, and T. C. Clancy, “On the latency and
energy efficiency of distributed storage systems,” IEEE Trans.
Cloud Comput., vol. 5, no. 2, pp. 221–233, Apr. 2017.

[16] Y. Xiang, T. Lan, V. Aggarwal, and Y. Chen, “Optimizing differen-
tiated latency in multi-tenant, erasure-coded storage,” IEEE Trans.
Netw. Service Manage., vol. 14, no. 1, pp. 204–216, Mar. 2017.

[17] DuraClass technology, [Online]. Available: https://www.ampinc.
com/wp-content/uploads/2013/09/RAISE.pdf

[18] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file sys-
tem,” ACM SIGOPS Operating Syst. Rev., vol. 37, no. 5, pp. 29–43,
2003.

[19] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed File System,” in Proc. IEEE Symp. Mass Storage Syst.
Technol., 2010, pp. 1–10.

[20] I. S. Reed and G. Solomon, “Polynomial codes over certain finite
fields,” J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 300–304, 1960.

[21] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchan-
dran, “Network coding for distributed storage systems,” IEEE
Trans. Inf. Theory, vol. 56, no. 9, pp. 4539–4551, Sep. 2010.

[22] I. Tamo, Z. Wang, and J. Bruck, “Zigzag codes: MDS array codes
with optimal rebuilding,” IEEE Trans. Inf. Theory, vol. 59, no. 3,
pp. 1597–1616, Mar. 2013.

[23] I. Tamo, Z.Wang, and J. Bruck, “Access versus bandwidth in codes
for storage,” IEEE Trans. Inf. Theory, vol. 60, no. 4, pp. 2028–2037,
Apr. 2014.

[24] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the local-
ity of codeword symbols,” IEEE Trans. Inf. Theory, vol. 58, no. 11,
pp. 6925–6934, Nov. 2012.

[25] I. Tamo and A. Barg, “A family of optimal locally recoverable
codes,” IEEE Trans. Inf. Theory, vol. 60, no. 8, pp. 4661–4676,
Aug. 2014.

[26] D. S. Papailiopoulos and A. G. Dimakis, “Locally repairable
codes,” IEEE Trans. Inf. Theory, vol. 60, no. 10, pp. 5843–5855,
Oct. 2014.

[27] H. Park, D. Lee, and J. Moon, “LDPC code design for distributed
storage: Balancing repair bandwidth, reliability, and storage over-
head,” IEEE Trans. Commun., vol. 66, no. 2, pp. 507–520, Feb. 2018.

[28] K. V. Rashmi, P.Nakkiran, J.Wang,N. B. Shah, andK. Ramchandran,
“Having your cake and eating it too: Jointly optimal erasure codes for
I/O, storage, and network-bandwidth,” in Proc. USENIX Conf. File
Storage Technol., 2015, pp. 81–94.

[29] J. Kim, E. Lee, J. Choi, D. Lee, and S. H. Noh, “Chip-level RAID
with flexible stripe size and parity placement for enhanced SSD
reliability,” IEEE Trans. Comput., vol. 65, no. 4, pp. 1116–1130,
Apr. 2016.

[30] Y. Li, P. P. C. Lee, and J. C. S. Lui, “Analysis of reliability dynamics
of SSD RAID,” IEEE Trans. Comput., vol. 65, no. 4, pp. 1131–1144,
Apr. 2016.

[31] T. J. Dell, “Awhite paper on the benefits of Chipkill-correct ECC for
PC server main memory,” IBM Microelectronics Division, vol. 11,
pp. 1–23, 1997.

[32] HP advanced memory protection technologies, 2008. [Online].
Available: ftp://ftp.hp.com/pub/c-products/servers/options/
c00256943.pdf

[33] S. Shadley, “NAND flashmedia management through RAIN,” 2011.
[Online]. Available: https://www.micron.com/ /media/
documents/products/technical-marketing-brief/brief_ssd_rain.pdf

[34] Micron Technology, Inc., “Memory management in NAND flash
arrays (TN-29–28),” 2005. [Online]. Available: https://www.
micron.com/�/media/documents/products/technical-note/
nand-flash/tn2928.pdf/

[35] C. Dirik and B. Jacob, “The performance of PC solid-state disks
(SSDs) as a function of bandwidth, concurrency, device architec-
ture, and system organization,” Proc. ACM SIGARCH Computer
Architecture News, vol. 37, no. 3, pp. 279–289, 2009.

[36] J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee, “A superblock-based flash
translation layer for NAND flash memory,” in Proc. ACM & IEEE
Int. Conf. Embedded Softw., 2006, pp. 161–170.

[37] F. Chen, R. Lee, and X. Zhang, “Essential roles of exploiting inter-
nal parallelism of flash memory based solid state drives in high-
speed data processing,” in Proc. IEEE Int. Symp. High Perform.
Comput. Architecture, 2011, pp. 266–277.

[38] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and C. Ren, “Exploring
and exploiting themultilevel parallelism inside SSDs for improved
performance and endurance,” IEEE Trans. Comput., vol. 62, no. 6,
pp. 1141–1155, Jun. 2013.

[39] S. Im and D. Shin, “Flash-aware RAID techniques for dependable
and high-performance flash memory SSD,” IEEE Trans. Comput.,
vol. 60, no. 1, pp. 80–92, Jan. 2011.

[40] D. Ryu, “Solid state disk controller apparatus,” U.S. Patent 8 159 889,
Apr. 17, 2012.

[41] C. Kim and A. K. Agrawala, “Analysis of the fork-join queue,”
IEEE Trans. Comput., vol. 38, no. 2, pp. 250–255, Feb. 1989.

[42] R. Nelson and A. Tantawi, “Approximate analysis of fork/join
synchronization in parallel queues,” IEEE Trans. Comput., vol. 37,
no. 6, pp. 739–743, Jun. 1988.

[43] E. Varki, A. Merchant, and H. Chen, “The M/M/1 fork-join queue
with variable sub-tasks,” 2009. [Online]. Available: Unpublished-
http://www.cs.unh.edu/ varki/publication/2002-nov-open.pdf

[44] D. P. Bertsekas, R. G. Gallager, and P. Humblet, Data Networks,
vol. 2. Upper Saddle River, NJ, USA: Prentice-Hall, 1992.

[45] H. A. David and H. N. Nagaraja, Order Statistics. New York, NY,
USA: Wiley, 2003.

[46] G. Casella and R. L. Berger, Statistical Inference, vol. 2. Pacific
Grove, CA, USA: Duxbury, 2002.

[47] K. S. Trivedi, Probability & Statistics With Reliability, Queuing and
Computer Science Applications. Hoboken, NJ, USA: Wiley, 2008.

[48] L. S. C. Harrison White, “Queuing with preemptive priorities or
with breakdown,” Operations Res., vol. 6, no. 1, pp. 79–95, 1958.

[49] J. Kim, S. Seo, D. Jung, J. Kim, and J. Huh, “Parameter-aware I/O
management for solid state disks (SSDs),” IEEE Trans. Comput.,
vol. 61, no. 5, pp. 636–649, May 2012.

[50] Q. Wei, C. Chen, and J. Yang, “CBM: A cooperative buffer man-
agement for SSD,” in Proc. IEEE Symp. Mass Storage Syst. Technol.,
2014, pp. 1–12.

[51] X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, “Regular and irregular
progressive edge-growth tanner graphs,” IEEE Trans. Inf. Theory,
vol. 51, no. 1, pp. 386–398, 2005.

[52] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. S. Manasse,
and R. Panigrahy, “Design tradeoffs for SSD performance,” in Proc.
USENIXAnnu. Tech. Conf., 2008, vol. 8, pp. 57–70.

[53] L. M. Grupp, J. D. Davis, and S. Swanson, “The bleak future of
NAND flash memory,” in Proc. USENIX Conf. File Storage Technol.,
2012, pp. 2–2.

[54] P. Desnoyers, “What systems researchers need to know about
NAND flash,” in Proc. USENIX Workshop Hot Topics Storage File
Syst., 2013, Art. no. 6.

PARK AND MOON: IMPROVING SSD READ LATENCY VIA CODING 1821

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on November 22,2020 at 14:16:59 UTC from IEEE Xplore. Restrictions apply.

https://www.ampinc.com/wp-content/uploads/2013/09/RAISE.pdf
https://www.ampinc.com/wp-content/uploads/2013/09/RAISE.pdf
ftp://ftp.hp.com/pub/c-products/servers/options/c00256943.pdf
ftp://ftp.hp.com/pub/c-products/servers/options/c00256943.pdf
https://www.micron.com/ /media/documents/products/technical-marketing-brief/brief_ssd_rain.pdf
https://www.micron.com/ /media/documents/products/technical-marketing-brief/brief_ssd_rain.pdf
https://www.micron.com/~/media/documents/products/technical-note/nand-flash/tn2928.pdf/
https://www.micron.com/~/media/documents/products/technical-note/nand-flash/tn2928.pdf/
https://www.micron.com/~/media/documents/products/technical-note/nand-flash/tn2928.pdf/
https://www.micron.com/~/media/documents/products/technical-note/nand-flash/tn2928.pdf/
http://www.cs.unh.edu/ varki/publication/2002-nov-open.pdf

Hyegyeong Park (Member, IEEE) received the
PhD degree in electrical engineering from the
Korea Advanced Institute of Science and Technol-
ogy, South Korea, in 2018, and was a postdoctoral
researcher at KoreaAdvanced Institute of Science
and Technology, South Korea. She is currently
a postdoctoral fellow with the Computer Science
Department, Carnegie Mellon University, Pitts-
burgh, Pennsylvania. Her research interests inclu-
de the field of coding and information theory
for distributed systems with the current focus on
coding for distributed computing and distributed
machine learning.

Jaekyun Moon (Fellow, IEEE) received the PhD
degree in electrical and computer engineering
from Carnegie Mellon University, Pittsburgh,
Pennsylvania. He is currently a professor of elec-
trical engineering at Korea Advanced Institute of
Science and Technology, South Korea. From
1990 through early 2009, he was with the faculty
of the Department of Electrical and Computer
Engineering, University of Minnesota, Twin
Cities. He was consulted as chief scientist for
DSPG, Inc. from 2004 to 2007. He also worked

as chief technology officer at Link-A-Media Devices Corporation. His
research interests are in the area of channel characterization, signal
processing and coding for data storage and digital communication. He
received the McKnight Land-Grant Professorship from the University of
Minnesota, Minneapolis, Minnesota. He received the IBM Faculty Devel-
opment Awards as well as the IBM Partnership Awards. He was awarded
the National Storage Industry Consortium (NSIC) Technical Achieve-
ment Award for the invention of the maximum transition run (MTR) code,
a widely used error-control/modulation code in commercial storage sys-
tems. He served as program chair for the 1997 IEEE Magnetic Record-
ing Conference. He is also past chair of the Signal Processing for
Storage Technical Committee of the IEEE Communications Society. He
served as a guest editor for the 2001 IEEE JSAC issue on Signal Proc-
essing for High Density Recording. He also served as an editor for the
IEEE Transactions on Magnetics in the area of signal processing and
coding for 2001 to 2006.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1822 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 12, DECEMBER 2020

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on November 22,2020 at 14:16:59 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

